
J .  Fluid Mech. (1975), 801. 67, part 3, p p .  597-610 

Printed in Great Bri tain 
597 

The generation of sound by aerodynamic sources 
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This paper examines the effect of steady flow on the generation of sound by 
aerodynamic sources located in the neighbourhood of a scattering body. The 
analysis is facilitated by the use of a reverse-flow reciprocal theorem which is 
valid for a certain class of inhomogeneous flow problems. I n  the case of acoustic 
‘bremsstrahlung’, in which sound is generated during the passage of a silent 
fluid inhomogeneity, such as an entropy spot, past an obstacle in the flow, an 
elegant discussion of the interaction can be given in terms of a renorma,lized 
Green’s function. Here the effect of the obstacle is equivalent to a local distortion 
of the geometry of the three-dimensional space occupied by the medium, the 
extent of which governs the properties of the acoustic radiation. This is illustrated 
by means of a detailed analysis of the sound generated during the unsteady con- 
vection of a source of constant strength through a neck in a duct. 

1. Introduction 
The Lighthill ( I  952,1954) theory of aerodynamic sound is based on an acoustic 

analogy in which turbulence provides a quadrupole source distribution in an 
ideal fluid a t  rest. In  the development of the theory Lighthill, and later Ffowcs 
Williams (1963) and Ffowcs Williams & Hawkings (1969) emphasized the need 
to take account of source-convection effects in estimating the radiated sound 
pressure levels. More recently Ffowcs Williams (1974), in a study of noise genera- 
tion by a turbulent shear layer, has demonstrated the desirability of expressing 
the temporal variations of source distributions in motion in terms of material 
derivatives following that motion. This is particularly important in the case of a 
source such as, for example, an entropy spot, which is acoustically silent when 
convecting uniformly, but emits sound (acoustic ‘ bremsstrahlung ’) when it 
encounters a flow inhomogeneity such as would be caused by the presence of an 
obstacle in the fluid. 

In  the absence of flow the analysis of the acoustic radiation from a source 
in the neighbourhood of a scattering body is often facilitated by use of the 
reciprocal theorem. The Helmholtz (1860) reciprocal theorem states that, in the 
presence of arbitrary, fixed rigid scattering surfaces, the acoustic velocity poten- 
tial a t  a point B due to a point source of sound a t  A is the same as it would have 
been a t  A had the source been situated a t  B. I n  a discussion of more general sys- 
tems, Rayleigh (1873) showed that the theorem remains true in the presence of 
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dissipative forces, provided that these arise from resistances proportional to the 
first power of the velocity, and that the fluid need not be homogeneous, nor the 
scattering surfaces rigid. Rayleigh (1876) also clarified the correct interpretation 
of the theorem when the acoustic source has a dipole or quadrupole character 
rather than that of a simple monopole. 

The theorem has been applied to the study of the enhancement of aerodynamic 
noise from sources located in the neighbourhood of sharp scattering surfaces. 
The presence of a scattering edge converts near-field, essentially incompressible 
turbulent flow fluctuations into radiating sound waves (Ffowcs Williams & 
Hall 1970). Mention may be made, in particular, of the analysis of Crighton & 
Leppington (1970), who used the theorem to examine the scattering of sound 
from quadrupole sources located near the edge of a semi-infinite compliant 
plate. Crighton & Leppington (1973) have also considered the problem of the 
scattering of sound by a thick rigid plate, and invoked the reciprocal theorem 
to justify their procedure for the matching of asymptotic expansions valid in 
different parts of the wave field. 

The author is not aware of any attempts to apply similar methods to problems 
in which the mean state of the fluid medium is one of steady flow, and in which 
acoustic sources are convected past fixed scattering bodies. Such flow regimes 
represent a more realistic approximation to the environment of noise sources 
located in engine ducts and near struts and trailing edges. I n  this paper an ap- 
proach is made towards these more general problems by means of a simple exten- 
sion of the reciprocal theorem. This extension constitutes a ‘reverse flow’ theorem 
wherein, in the reciprocal problem, inwhich source and observer are interchanged, 
the steady mean flow is reversed a t  all points in space. Such reverse-flow theorems 
are familiar in lifting-surface theory (see, for example, Flax 1952; Miles 1959; 
Ogilvie 1973), although in that theory the lifting surfaces are required to assume 
a linearized plan-form, so that the mean reversible flow velocity is uniform a t  all 
points in space. On the contrary we shall be concerned with situations in which the 
steady perturbation of the uniform stream produced by the presence of a scatter- 
ing body is nonlinear, so that the acoustic problem is one of sound propagation 
in a medium in which the steady flow is inhomogeneous. Naturally such a theo- 
rem is valid only for a rather restricted class of steady flow regimes. I n  particular 
it is necessary to assume that M 2  < 1, where M is a characteristic Mach number of 
the flow. If the acoustic wavelengths involved are not small compared with the 
scale of variation of the mean velocity field it is also necessary to assume that 
the mean velocity field is irrotational. 

From a practical point of view these restrictions are severe. Nevertheless the 
theorem permits the solution with relative ease of several apparently difficult 
model problems. The analysis of such problems, it can be argued, must inevitably 
lead to a greater degree of insight into the mechanisms of scattering and diffrac- 
tion in real inhomogeneous flows. Under the same restriction on Mach number, 
the principal acoustic properties of these flows would hardly be expected to differ 
substantially from predictions based on the appropriate model. 

The reverse-flow reciprocal theorem is discussed in 5 2 of this paper. In  5 3 the 
theorem is used to determine the sound radiated by a point source located in the 
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vicinity of a rigid circular cylinder in the presence of a st,eady streaming flow. 
This is relevant to the study of the effect of aircraft flight on the radiation from 
aerodynamic noise sources located near scattering surfaces. The analysis of 
problems involving source motion relative to the scattering body is slightly 
more complicated, but in problems of acoustic bremsstrahlung, in which sound 
is generated only during the passage of an acoustically silent source past a body, 
an elegant analysis can be conducted in terms of a renormalized Green’s function 
( 3  4). The functional form of this Green’s function is identical with that appro- 
priate to uniform flow in free space, but in the neighbourhood of the scattering 
body the effect of that body is equivalent to a local distortion of the three- 
dimensional Euclidean space occupied by the medium, the extent of which 
governs the properties of the acoustic bremsstrahlung. This is illustrated in $ 5  
by a discussion of the problem of the sound generated when a quiescent point 
source (i.e. a source of constant strength) is convected in a low Mach number 
steady flow through a neck in a duct. When the source is far from the neck 
conditions are essentially steady and no sound is generated. The unsteady 
motion of the source in passing through the neck, however, generates a com- 
pression wave which passes downstream ahead of the source and an expansion 
wave which radiates upstream from the neck. 

2. Reverse-flow reciprocity 
Consider a configuration in which fluid extending to infinity contains a system 

of closed surfaces S. We shall assume for the purposes of this discussion that the 
surfaces are of finite extent, although the more general case involving surfaces 
extending to infinity requires only a slight modification of the following argu- 
ment. The surfaces are fixed in space, and the fluid is assumed to be inviscid and 
in steady incompressible motion with velocity U(x), i.e. such that 

divU = alJifaxi = 0. (2.11 
I n  the steady flow the normal velocity on S must vanish. This is the case even 

if the surfaces S are compliant or can themselves support small mechanical 
vibrations. 

Let # denote the velocity potential of small disturbances in the fluid. On S 
we assume that q5 satisfies an impedance condition of the form 

iia+pxj = A+, (2 .2 )  

where 1 is a unit normal to S ,  and where in general h depends on the properties of 
S and on the local mean flow velocity U, i.e. h = h(U).  

We now restrict our attention to situations in which q5 satisfies the convected 
wave equation 

where the speed of sound c is assumed to be constant. We shall discuss below the 
precise conditions under which (2 .3 )  is appropriate to the practical problem of 
acoustics. 

(apt + ui alaxj)2 4 - ~ 2 0 2 9  = 0, (2 .3)  

Now consider a harmonic point source 

q = e-iwt6(x-xA), 
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located at x = x,. Then the time-reduced equation for the potential $A, say, is 

( - iw  + uialaxj)2 $A - c202$, = a(x - xA),  ( 2 . 5 ~ )  
with lja$,/axj = h(U) $A on S. (2.5 b )  

e-i"t8(x - xB) 
in which the reduced potential $B satisfies the reverse-flow convected wave 

(-io- uialaxj)2$B-c2v2$B = ~(x-x,) ,  ( 2 . 6 ~ )  equation 

with lja$B/axj = A(U)$, on S. (2 .6b )  

Then the reverse-flow reciprocal theorem asserts that 

Next consider the reciprocal problem for a point source 

# A ( X B )  = $B(xA). (2.7) 

Note that in (2.6) the mean convection velocity U has been reversed at  all 
points of the flow in the wave equation, but not in the boundary condition on 8. 
Observe also that the reversed flow does not necessarily correspond to a possible 
steady flow of the real system. The reversed flow is possible, of course, if U is an 
irrotutionul velocity field. 

The proof of (2.7) is straightforward, and the details differ from the usual 
proof (see, for example, Jones 1964, p. 63) only because of the presence of the 
terms in U in (2.5) and (2.6). The procedure consists of multiplying (2 .5 )  by 
$B and (2.6) by $,, subtracting the two equations and integrating over the 
volume V contained between a large spherical control surface C and the surfaces 
S.  This gives 

Using the divergence theorem, and noting that aqlax, 

$ d X A )  - = - 2iw l j  uj$A $BdZX 
S+C 

(2.8) 

= 0, (2.8) becomes 

+ I,,, 1,qu j ($B 2- $A 2) d2X 

The contribution to the surface integral from S vanishes on using (2 .5b )  and 
(2.6 b )  and recalling that Zj Uj = 0 on S. The contribution from C can also be seen 
to vanish on noting that the asymptotic forms for $A and $B are respectively 

1 
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where F'(x/lxI) and F'(x/[xI) are functions of the radiation direction x/~x[  
alone, and M, is the Mach number of the asymptotic uniform flow of the medium. 
This proves (2.7). 

Let us now examine the conditions under which (2.3) is likely to be an ade- 
quate characterization of the potential of a real flow. 

The steady mean flow a t  velocity U may be regarded as incompressible pro- 
vided that M 2  < 1, where M = U/c (see, for example, Batchelor 1970, p. 167). 
Since variations in the speed of sound c also depend on the square of the mean flow 
Mach number, this condition also ensures that c2 may be assumed to be constant 
in (2.3). 

In  the disturbed flow the velocity V is given by 

v = U+V$, (2.9) 

if it  is assumed that the disturbance of the flow from the steady state is irrota- 
tional. The linearized momentum equation then has the form 

(2.10) 

where, as above, the fluid is assumed to be inviscid, and where p, is the constant, 
undisturbed fluid density and p is the perturbation density. 

We now restrict our considerations to two possible cases. The first is that in 
which the acoustic wavelength is much smaller than the length scale associated 
with the variation of U, i.e. 

iau i a $  
~ a x ,  $ax, 

< --. -- 

Then, since the speed of sound is effectively constant when M2 < 1, equation 
(2.10) becomes approximately 

(2.11) 

Second, (2.11) is also valid for arbitrary wavelength if U is irrotational. For 
in that case aL$/axj = aUi/axi, and under the same condition on c2 equation (2.10) 
may be integrated exactly to yield (2.11). 

The linearized continuity equation has the form 

(2.12) 

so that the elimination of p/po between (2.11) and (2.12) leads directly to the 
convected wave equation (2.3). 

Note that the perturbation pressure, which is the parameter of physical 
importance in acoustics, is given in terms of $ by 

(2.13) 

and does not satisfy an equation as simple as (2.3). 
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FIGURE 1. A point source is located a t  y near a compact cylinder in the presence of a steady 
irrotational streaming flow. It is required to determine the acoustic field a t  the far-field 
point x,,. 

Observe also that we have shown that (2.3) is valid for arbitrary incompres- 
sible U provided that the wavelength is small enough. This implies that in geo- 
metrical acoustics a ray path is reversible provided that the mean flow is reversed 
-a result which is implicit in the work of Blokhintsev (1946). 

3. Scattering of sound from a point source by a rigid compact cylinder 
Our first application of the reverse-flow theorem is to the problem depicted 

in figure 1. An acoustic point source of the type considered in $ 2  [equation 
(3.4)] is located at the point y near to a rigid circular cylinder of radius a whose 
axis lies along the x, axis, where x = (xl, x2, x,). It is required to determine the 
acoustic potential a t  the far-field point x,,, say, in the presence of a steady irrota- 
tional streaming flow about the cylinder with velocity ( U ,  0, 0) far from the 
cylinder. By the reverse-flow theorem the potential at x0 is the same as the 
potential a t  y when the same source is placed at x0 and the mean flow is reversed. 
Note that, although the problem is posed in terms of a monopole source (2.4), the 
solution for more general source types (dipole, quadrupole, etc.) may be obtained 
by appropriate differentiation with respect to the source position vector y. 

We assume that the wavelength of the sound greatly exceeds the radius of the 
cylinder, and that the source a t  y is located well within a wavelength of the cylin- 
der. This implies that in the vicinity of the cylinder the flow is essentially in- 
compressible, so that in the reciprocal problem it is necessary to determine 
only the incompressible approximation to the potential at  y. 

In  the absence of the scattering cylinder the point source at  x,, in the reciprocal 
problem gives rise to an incident potential $i, say, which satisfies (2.5a) with 
x, = xo and U = ( -  U ,  0, 0). Without loss of generality assume that the point 
y in figure 1 lies in the xl, x2 plane. Then provided that M 2  < 1 the incident 
potential at y is given by 

$k = 4nc21y-xo( exp( - i w  [t- IY-xol ?- ".'Y-XO)]) C 
7 (3.1) 

1 
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where M = ( U / c , O , O )  (Morse & Ingard 1968, p. 717). Thus if [x0J $ Iy], and 
noting that the compactness parameter wI yl/c < 1, we have approximately 

C 

The scattered potential $s must be such that when it is combined with (3.2) 
the total potential satisfies the condition of zero normal velocity on the surface 
of the cylinder. To the lowest-order approximation we have 

By the reverse-flow theorem this is also the scattered potential a t  xo due to the 
source at y in the problem of figure 1. The scattered pressure perturbation at a 
general far-field point x is obtained by means of (2.13), and we find 

correct to order M .  
To interpret this result in the context of aerodynamic noise theory we now 

superpose on the whole system of figure 1 a uniform velocity ( -  U ,  0 , O ) .  This 
gives the case of a point source fixed relative to a cylinder which is itself in uni- 
form motion a t  speed U along the - x1 axis in fluid a t  rest a t  infinity. It is now 
appropriate to express the scattered pressure (3.4) in terms of the position of the 
observer relative to the cylinder a t  the time of emission of the sound, rather than 
in terms of x, which is the relative position on reception. Let the vector R repre- 
sent this retarded relative position; then for M 2  < 1, 

I x = R+MR, 

Thus if 0 is the angle between Y and R (see figure 2), and if 8 is the angle between 
- M and R, equation (3.4) becomes 

cos 0 exp { - iw(t  - R/c)) 
PS 21 Z e) (6) (1 -n/!Cos0)3 R (3.6) 

It is now clear that the scattered field is due to a dipole whose axis is along 
the 0 = 0 direction, i.e., along the radius vector normal to the cylinder which 
passes through the source position. However, (3.6) also reveals that the amplifica- 
tion of the pressure field caused by the translation of the source-cylinder com- 
bination a t  speed U is proportional to the Doppler factor (1 - M cos 0)-1 to the 
power three. This dependence on the Doppler factor, which has also been obtained 
by Crighton (1974, private communication), who considered the analogous prob- 
lem of a point-source-sphere combination by means of the method of matched 
asymptotic expansions, indicates that the combination of a source and a compact 
rigid scattering body in motion is not precisely equivalent to a point dipole. 
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Y 
Source 

U - 
-MR \ Y 

Observer 
FIGURE 2. Illustrating the relation between the co-ordinate systems x and R. 

For simplicity x, y and R are shown in the same ' flyover ' plane. 

Indeed the acoustic pressure field of an ideal dipole in motion is amplified by 
only two powers of the Doppler factor. A similar result has also been obtained 
by Ffowcs Williams & Lovely (1974), who showed that the pressure field radiated 
by a compact section of a plane boundary in the presence of a uniform steady 
flow is amplified by three rather than two powers of the Doppler factor. 

4. Scattering by an arbitrary compact body in a steady flow 
The above procedure which was applied to  obtain the scattered potential 

due to a point source located near a compact cylinder can be applied equally 
well to arbitrary compact source-body interaction problems in the presence of a 
low Mach number steady flow. For example in the case of a sphere of radius a 
whose centre is at the origin, it is easily deduced that the potential a t  a far-field 
point x due to a source 

e-iwt6(x - y) 
at y has the form 

m, Y, 4 w )  

(4.1) 
a formula which is valid in the compact limit wI yl/c < 1. 

I n  practical applications of this type of theory, however, the potential due to 
a stationary harmonic point source is generally not of particular interest. This is 
especially so in situations in which sound is generated through the unsteady con- 
vection of an acoustically silent source distribution (such as an entropy inhomo- 
geneity) past a solid immersed in the fluid. 

To treat such problems with any degree of generality it is necessary to know 
the Green's function of the problem G(x, y; t ,  7), say, which is the solution of 

(a/at + U . a / a ~ ) ~  G - c2V2G = 6(x - y) 8(t - T) (4.2) 
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whose normal derivative vanishes on the rigid surfaces and which satisfies the 
radiation condition a t  infinity. 

I n  low Mach number flows of the type considered here, the frequency of the 
acoustic bremsstrahlung generated by an interaction of the above type is deter- 
mined by the ratio UIL,  where U is a characteristic flow speed and the length L 
is a scale characteristic of the body. The corresponding acoustic wavelength is of 
order L / M ,  which greatly exceeds L for sufficiently small M .  This implies that in 
such problems the body generally acts as a compact seatterer, and that therefore 
a knowledge of that approximation to the Green’s function G(x,  y; t ,  r )  appro- 
priate to low frequency source distributions should provide an adequate mathe- 
matical description of the radiated sound. 

If the exact Green’s function is known, then in such compact situations its 
Fourier time transform can be developed into an asymptotic expansion in powers 
of the compactness parameter wLlc. If all of the frequency components of the 
actual source distribution are small, then only the first few terms of this expansion 
will be important in the determination of the acoustic radiation. Thus, for 
example, (4.1) may be regarded as the first two terms in such an expansion in the 
case of the source-sphere interaction problem. The corresponding approximation 
to the exact Green’s function is obtained by multiplying (4.1) by (27r)-l exp (iw7) 
and integrating over all w .  This gives 

as the first non-trivial approximation to the exact Green’s function of the prob- 
lem. 

To interpret this result we recall that, if the complete asymptotic expansion 
for the potential, approximated above by (4.1), had been used, the Green’s 
function would have assumed the form 

I 
G ( x ,  y ; t ,  7) = ~ 

47rC21Xl C 

When this is convoluted with the actual source distribution to give the radiated 
sound, the neglect of terms with n 2 2 implies that time derivatives of that dis- 
tribution higher than the first can be neglected. 

If we restrict ourselves to situations in which (4.3) gives an adequate descrip- 
tion of the scattered radiation, then the transformation 

y = Y(1 +CL3/2IYl3), (4.5) 

in which deviations from the approximation Y = y can be regarded as a local 
distortion of ‘free space ’ caused by the presence of the sphere in the flow, enables 
the following elegant approximation to (4.3),  valid when 1x1 I y 1 ,  to be adopted: 

Ix-YI + M . ( x - Y ) )  
G(x, Y;  t ,  7) = C (4.6) 

C 
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Since [ xJ & a we can to the same approximation replace x in this formula by 

X = x(l+a3/2[xl3).  

But when this is done the resulting expression is seen to be symmetric in X and Y 
under change of sign of M. I n  other words, by the reverse-flow reciprocal theorem 

) (4.7) 
IX-YI M . ( X - Y )  

+ c  4nc2IX-YI C 
G(X-Y;t-7) = 

provides a description of the generation of sound for an arbitrary source position 
Y and observation point X provided only that either /XI 9 a or (Y( 9 a. 

The following points should-be noted. When 1x1, (YI & a, equation (4.7) 
reduces to the free-space Green’s function. That is Rayleigh scattering of sound 
from a distant source by the sphere (in which the scattered potential is O(oa/c)2) 
is neglected. I n  the present approximation, therefore, the presence of the sphere 
only modifies the sound field when it is located in the near field of the source, or 
when the observer is within a wavelength of the sphere. 

The above results for a sphere can easily be generalized to an arbitrary compact 
fixed solid in the flow. To do this we note that yi (i = 1,2 ,3)  is the potential of a 
uniform flow a t  unit speed in the i direction. Let the perturbation of the incom- 
pressible flow potential produced by the presence of the solid body be denoted 
byq$(y), where cp: N 0(1//~1~) when / y /  is large, then we define the co-ordinate 
transformation analogous to (4.5) by 

y = Y +cp*(Y), (4.8) 

after which the Green’s function has the form given in (4.7). 
When several compact scatterers are present in the flow (but ‘diffusely’ 

spread on a wavelength scale), cp* may be regarded as defining the perturbation 
of a uniform flow about the whole system of bodies. The transformation (4.8) 
is the identity transformation far from the individual scattering bodies, but near 
a body ‘p* is large, and the body can be imagined to distort locally the geometry 
of the three-dimensional Euclidean space occupied by the medium. 

5. Acoustic bremsstrahlung in a low Mach number duct flow 
As an illustration and extension of the ideas introduced in the previous 

section we now determine the acoustic radiation emitted when a point source of 
constant strength q is convected in a low Mach number irrotational flow through 
a neck in a hard-walled duct (see figure 3). When the source is located far from the 
neck, in the region of uniform flow, no acoustic pressure fluctuations are de- 
veloped. The unsteadiness of the source motion in the vicinity of the neck, how- 
ever, is accompanied by the emission of sound waves of characteristic frequency 
UIL,  where L is the length scale of the necking and U is the characteristic convec- 
tion speed. A typical wavelength N L / M  is therefore large in comparison with the 
neck scale L, and the perturbed flow in the neck may consequently be treated as 
if it were incompressible. 

To solve this problem we first determine the lowest-order terms in the low 
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FIGURE 3. A point source of constant strength q is convected by a 
steady irrotational flow through a neck in a duct. 

frequency expansion of the Green's function for an observation point x far from 
the neck. Thus we consider the solution of the equation 

(a/at + U . a / a ~ ) ~  # - c2V2# = e-iot 6(x - y), (5.1) 

where the source is located a t  a point y in the region of the neck. As before the 
analysis is conducted in terms of a reciprocal problem 

(slat - u . qaxy $ - c2v2$ = e-iot 6(x - x) , (5 .2 )  

in which the irrotational convection velocity is reversed a t  all points of the flow 
and the source is located a t  Z, l j z l  > I yI. Then by the reverse-flow theorem 

$6) = &Y).  (5.3) 

Now for the low frequencies contemplated in this problem the disturbance 
generated by the distant source in (5 .2 )  will develop into a plane propagating 
incident wave on reaching the neck. Introduce a system of co-ordinates in which 
the +x, axis is in the direction of the mean flow in the duct, with the origin 
located in the region of the neck. Then in the case in which El is positive, the poten- 
tial of the incident wave in the reciprocal problem is given by 

where A is the asymptotic cross-sectional area of the duct, M = U/c,  and U is 
the uniform flow speed far from the neck. At the neck a reflected wave $R and a 
transmitted wave qT are generated. Far from the neck these have the following 
respective functional forms: 

- 

(5 .5 )  1 $12 = $At - .,/c( 1 - 40) (XI > O ) ,  
- 

#T $r(t+x, /c( l+N))  (XI < O ) .  

I n  the approximation in which terms of order ( ~ L / c ) ~  and higher are neglected 
in the low frequency expansion of the Green's function, the flow in the neigh- 
bourhood of the duct neck is incompressible, and the potential there is given by 

- 
4 = @&I + @l@) #*W. (5 .6 )  
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where the second term on the right is O(wL/c) relative to the first. The potential 
function $*(x) describes steady irrotational flow through the neck, and is assumed 
to be known. It is normalized in such a manner that 

$ -f 9 0 ( t )  +41(t)Xl  as x1 --f _+ m. (5.7) 

This asymptotic expression must match the corresponding terms in the expan- 
sion of the acoustic wave field for small retarded times x,/c(i  _+ M), and this 
implies that - 

$24) = %+o(t) = $At) +W), I 

It follows that, correct to order M ,  

i.e., using (5.4), 

By the reverse-flow theorem this is also the potential $(E) a t  3 due to a har- 
monic point source located a t  x .  The corresponding approximation to the Green’s 
function G ( x ,  y; t ,  r )  due to a source 6 ( x  - y) 6(t - r )  located a t  y in the original 
problem is obtained by Fourier integration with respect to w ,  the causality con- 
dition being satisfied by indenting the path of integration to pass above the 
singularity at o = 0. This gives 

where H is the Heaviside unit function. 
As in $4 a co-ordinate transformation can be introduced and is defined here 

q = $*(Y), y2 = 92, y3 = Y3, (5.12) 

-+ y1 when I yI is large. Then the terms in (5.11) can be approximated 

by 

in which 
further by 

‘ ( c ( l+M)  - * 2cA 
G ( x , Y ; t , r )  = -H t - r -  (5.13) 

This expression has been deduced on the assumption that x1 B L > 0. 
A similar calculation for points x1 upstream of the neck reveals that CT can be 
expressed in a form valid for all Jxll 9 L, viz. 

G ( x , Y ; t , r )  = -H t - r -  Ixl-ylI 
2cA ’ ( c[l+Msgn(xl-Yl)] 

(5.14) 

Again, as in $4 this result can be generalized by replacing x by X, and this 
gives our finai version of the low frequency approximation to the Green’s func- 
tion : 

G ( X - Y ; t - r )  = Ixl-ylI -H t-7- 
2cA ( c[l+Msgn(X,-Y,)] 
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This generalization is valid for an arbitrary source location Y and observation 
point X provided only that a t  least one of these points is at least a wavelength 
or so from the neck. 

We are now in a position to solve the problem posed at  the beginning of this 
section. We consider a point source of constant strength q convected along the 
duct at  the locally steady mean flow velocity U(x). Let xo(t) denote the position 
of the source at  time t. The equation for the potential of the acoustic field is then 

( a p t  + u . apxy $ - C2V2$ = - c2qS[x - xo(t)]. (5.16) 

Using the Green's function (5.15)' with the observation point x 2: X far from 
the neck of the duct, we have 

(5.17) 

Now the parameter of physical significance is the acoustic pressure perturba- 
t i o n ~ ,  given in terms of the perturbation potential # by (2.13). Applying this to 
the result (5.17) we have 

for M 2  << 1, i.e., 
1 - M sgnx, 

where T = t -  Ix,l/c(l+Msgnx,). L '3' ince 

a$*/& = V$*. U(Xo(7)) 
and M 2  1, this becomes 

1 P = = 2A [ 1 + cu (U [xo( T), - U2) + . . . 

(5.18) 

When the source is far from the neck U[xo(T)] = ( U ,  0,O) and the second term 
in this expression vanishes. The first term is constant, and actually represents 
the constiant pressure perturbation associated with a point source of constant 
strength convecting along a duct of uniform cross-section. Evidently the time- 
dependent part of (5.18) describes the radiation emitted during the passage of the 
source through the neck. 

Since steady irrotational flow in the duct satisfies Bernoulli's equation in the 
form 

(5.19) POW + 4 P o ~ 2 ( x )  = P, + 4Po u2, 
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where p0(x) is the steady pressure at  x and p, is the pressure in the uniform 
flow far from the neck, the acoustic pressure perturbation is also given by 

(5.20) 

In  the region of the neck po(x) < pm, so that, if q > 0,  equation (5.20) reveals 
that the acoustic fieId consists of a compression wave which is radiated down- 
stream ahead of the source, and an expansion wave radiated upstream from the 
neck. The strength of the radiation is directly proportional to q/AU,  the ratio 
of the mass flux from the source to the constant mass flow down the duct, and the 
peak acoustic pressure level is proportional to the largest steady pressure defect 
of the ambient fluid along the trajectory of the source through the neck. 

This work was supported by the Bristol Engine Division of Rolls Royce 
(1971)  Ltd. 
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